ﬁ/ TECHNOLOGY

Training:
Preliminaries

what is Open CASCADE Technology?

Open CASCADE Technology (OCCT) is a powerful open-source C++ library, consisting of thousands of
classes and providing solutions in the area of:

« Surface and solid modeling: to model any object.
« 3D and 2D visualization: to display and animate objects.
« Data exchange: to import and export standard CAD formats.

« Rapid application development: to manipulate custom application data.

OCCT is also applicable in many other areas of CAD/CAM/CAE, including AEC, GIS, and PDM. OCCT is
designed for the industrial development of 3D modeling and visualization applications that require good
quality, reliability, and a robust set of tools.

OCCT libraries are distributed in open source for multiple platforms under GNU Lesser General Public
License (LGPL) version 2.1 with an additional exception.

How to get OCCT?

You can obtain Open CASCADE Technology by:
= Downloading a release from the official website:

« Create an account on the OPEN CASCADE company official website.
* Once registered, you will get access to the download page.

= Building OCCT from sources (Git repository).
To obtain OCCT sources from the official Git repository, you should:
* Create an account on the collaborative development portal.

« Clone OCCT Git repository (using your ssh key).
* Download necessary 3rd-party libraries.

Once OCCT sources are downloaded, you can generate project files for your IDE using CMake.

Building from sources

OCCT building from sources involves several steps:

1. Download the OCCT source code.

2. Download necessary third party products (TCL and FreeType are minimal requirements for the standard
build).

3. Configure CMake:

Push the “configure” button.

Set SRDPARTY_DIR variable pointing to unpacked third parties folder.

Change INSTALL_DIR to any desirable directory.

Enable necessary products.

Enable BUTLD_USE _PCH to speed up calculations using precompiled headers if no OCCT

development is expected.

4. Push the “configure” button again.

5. Push the "generate” button.

uhwh=

Video instruction: 01_preliminaries_occt_build_from_sources.mp4

What is in distribution?

Object libraries

Object libraries are grouped into modules:

« Foundation classes. Module
* Modeling data. Library
* Modeling algorithms. Package

* Visualization.
Class

- Data exchange.

* Shape healing.

« Application framework (OCAF).

Each module contains several libraries, each library contains classes grouped into packages:

What is in distribution?

Documentation Programming samples
« Automatically generated Programming samples using
from Doxygen comments. different GUI:
« Manually written user and * MFC.
developer guides. ——
- Qt
* Java.

Test harness application

TCL-based command interpreter.
A set of predefined commands.

Most of OCCT API is available in
Test Harness.

Test Harness is a prototyping
framework of OCCT.

This application is used to test
OCCT itself.

what you should know

Mandatory knowledge:

* C++ object-oriented language.
* Programming technologies.

« Common mathematics, algebra, geometry.

Optional knowledge :

» Basics of computer-aided design.

Literature

“Introduction to solid modeling” “Solid modelling and CAD “Parametric and Feature Based
by Martti Mantyla systems” by lan Stroud and CAD/Cam: Concepts,
Hildegarde Nagy Techniques, and Applications”
by Jami J. Shah and Martti
* Introduction-level book for a * Assembly structure. Mantyla
newcomer. : :
* General pieces of advice
* Requirements to geometric about data model * Feature concept.
modeling: geometric question organization.

concept. « Parametric modeling concept.

 Various modeling techniques:
wireframe, boundary
representation, voxels. Their
advantages and drawbacks.

- Difference between geometric
modeling and other kinds of
engineering software.

Literature

“A Practical Guide to Splines” by “The NURBS Book” by Les “Geometric Modeling” by
Carl de Boor Piegl and Wayne Tiller Nikolay Golovanov
* QOCCT follows this book for « SMLib kernel is based on * C3D Toolkit is built on this book.
underlying spline mathematics. this book. :
* Covers a wide set of problems.
« Code samples are based on ¢ The best book about b- . Util th e-based h
Fortran. splines. ilizes the recipe-based approach.
* Indexes start from 1. * A lot of code samples.

* Code samples are based
on C/C++.

* |Indexes start from O.

Performance tips

Parallel mode

Several algorithms have parallel
mode:

* BRepAlgoAPI
* BRepMesh_IncrementalMesh

* BVH Tree construction

Part-related

= Use simple objects to get better
performance:

« (2 continuity;
* Low degree splines;
* Small knot vector

= Use canonical geometry where
possible:
 Effective implementations for

many algorithms

= Use topological information

instead of geometric data:

« Data sharing, connectivity,
etc.

Data model

Utilize data sharing. This technique
is called instancing:

» Use the same part several times,
placing them with different
transformations

* Also, this concept can be reused
on the visualization level (AIS
Connected Interactives)

Performance tips

Visualization

Try to keep a number of primitive groups
as low as possible:

« Each group involves corresponding set
of OpenGL operations (gIDrawArrays /
glDrawElements). These calls are
computationally costly.

« Big amount of Primitive groups affects
CPU performance. Each group should be
processed individually on the CPU side.
In the case of OpenGL, this process
works in a single thread mode.

Coding

For big order matrices do not use OCCT linear
algebra since it is designed for low-order
inputs.

Use OCCT allocators to avoid dynamic memory
allocation.

Use accelerating data structures like BVH.
Use local operations where possible.

Use face maximization after the Boolean
algorithm.

Avoid usage of NCollection_Sequence. Use
NCollection_Vector or NCollection_List instead.

wWhat is Draw?

Draw is a basic testing tool for Open CASCADE Technology libraries. It provides:
« A command interpreter based on TCL language.

A set of predefined commands.

* A possibility to add custom commands.

In Draw you may create and manipulate, save, and restore entities, display them in the views, etc. Draw may be
used for prototyping of custom scenarios for automated testing, etc. Open CASCADE Technology distribution
provides a ready-to-use implementation of the Draw executable called DRAWEXE. Start it as follows:

call %CASROOT%\env.bat
DRAWEXE . exe

wWhat is Draw?

DRAWEXE provides an interface for loading new commands from plugin libraries. Draw commands defined in
Open CASCADE Technology modules are organized into such plugins and can be loaded to DRAWEXE by

running the pload command.

pload [-PluginResourceFile] [[Key1] [Key2]

The default resource file for Draw plugins is %CASROOT%/src/DrawResources/DrawPlugin, it collects
definitions for all standard plugins. In order to load all standard Draw commands, run:

Draw[1]> pload ALL

Draw command language

A command consists of one or more words: the first word is the name of the command, and additional words
are arguments. Words are separated by spaces or tabs. The following command constructs a box:

Draw[1]> box b 16 10 10

Commands are separated by newlines or semicolons:
Draw[1]> box b 10 10 10; fit

Commands can be read from a file using the source command:

Draw[1]> source myscript.txt

Basic commands

help command provides help on commands:

Draw[1]> help [command]

ex1t command terminates program execution:
Draw[1]> exit

source command reads commands from a file:
Draw[1]> source box

directory command is used to return a list of all draw
global variables matching a pattern:

Draw[1]> directory[pattern]
whatis command gets information on a draw variable:

Draw[1]> whatis <varname>

dump command gets long information about a
draw variable:

Draw[1]> dump <varname>

save puts the contents of a draw variable in a
file:

Draw[1]> save <varname> <filename>

restore puts the contents of a file in a draw
variable:

Draw[1]> restore <filename> <varname>

View commands

Draw provides a set of standard screen layout display command makes objects visible:

commands: Draw[1]> display <varname> [...]

Draw[1]> axo; pers; top; bottom; left; donly command makes objects visible and

right; front; back; mu4; v2d; av2d erases all other objects:

wzoom command allows to select with the mouse the Draw[1]> donly <varname> [...]
area to zoom:
erase command erases objects from all the

Draw[1]> wzoom .
views:

Commands to pan a view:
Draw[1]> erase <varname> [...]

Draw[1]> pu; pd; pr; pl; 2pdu; 2dpd; 2dpr; . /
2dp1l Commands to clear objects from views:

Commands to rotate the view up, down, right, left: Draw[1]> clear; 2dclear

Draw[1]> u; d; 1; r;

3D view commands

vinit command initializes 3D view:

Draw[1]> vinit

vdisplay command makes objects visible:
Draw[1]> vdisplay <varname> [...]
Clear objects from views:
Draw[1]> vlcear [varname] [...]

Set background color:

Draw[1]> vsetcolorbg <r> <g>

Set camera options:
Draw[1]> vcamera [options]

Set view parameters:

Draw[1]> vviewparams [options]

Set light options:

Draw[1]> vlight [options]

DrawTrSurf package

DrawTrSurf package is used to connect C++ geometric entities with
Draw instance. The methods of this package allow to:

* Set an object to a Draw geometric variable with a given name.

DrawTrSurf::Set (Standard CString, Handle (Geom Geometry))

* Get an object from a Draw geometric variable with a given name.
Handle (Geom Geometry)DrawTrSurf::Get (Standard CString)

Get o
J ~__—
Geometric
application variable

Set

Geometric
DRAW variable

DBRep package

DBRep package is used to connect C++ topological entities with Draw
instance. The methods of this package allow to:

« Set TopoDS_Shape to a Draw topological variable with a given name.
DBRep: :Set (Standard CString, TopoDS Shape)
* Get TopoDS_Shape from a Draw topological variable with a given name.

TopoDS Shape DBRep::Get(Standard CString)

Get o
I __ERE- /
Topological Topological

DRAW variable application variable

Set

Draw-based application

To write a Draw program it is necessary to respect the following structure:
 Start and initialize Draw from the main function:

int main (int argc, char* argv[])

{
Draw Appli(argc, argv, Draw InitAppli):;
return 1;

}

* Alternatively, the launch can be made with the use of macro:

#include <Draw Main.hxx>
DRAW MAIN

Definition of new commands

When you run Draw, the system calls the function Draw_InitAppli. This function must be defined in the
executable, and the commands must be added (registered) in the Draw command interpreter within this function.

void Draw InitAppli(Draw Interpretoré& theCommands)
{
// Add standard Draw commands such as:
Draw: :Commands (theCommands) ;
GeometryTest::AllCommands (theCommands) ;
BRepTest::AllCommands (theCommands) ;

// Add user commands here

theCommands .Add ("mycommand", // Command name.
"mycommand help", // Help string.
___FILE , // Macro giving the name of the current file.
MyCommand, // C++ function name.

"Group name" // Group the command belongs to.

Draw plugin mechanism

Alternatively, new Draw commands can be combined into some dynamic library and loaded into the DRAWEXE
executable with a plugin interface. The entry point to the plugin should be implemented as the static method
Factory() of some class which should be declared with the macro DPLUGIN, for instance:

void ViewerTest::Factory(Draw Interpretor& theDI)

{

// Definition of viewer commands.
ViewerTest: :Commands (theDI) ;

}

// Declare entry point PLUGINFACTORY
DPLUGIN (ViewerTest)

OCCT is delivered with the DrawPlugin resource file located in the $CASROOT/src/DrawResources directory. The
format of the file is compliant with standard OCCT resource files (see the Resource_Manager.hxx file for details).
Each key defines either a sequence of further (nested) keys or the name of the dynamic library. Keys can be nested
down to an arbitrary level. However, cyclic dependencies between the keys are not being checked. Example:

ALL : MODELING, OCAFKERNEL, DATAEXCHANGE
MODELING : TOPTEST
TOPTEST : TKTopTest

Command definition

An example of the definition of a new Draw command is the following:
#include <tcl.h>

// Command entry point.

static Standard Integer TestBox (Draw Interpretoré& di,
Standard Integer argc,
const Standard Character** argv)

// Check command arguments.

if (argc < 5)

{
cout << "Invalid number of arguments\n" << endl;
return TCL ERROR;

}

// Create a solid box, compute its volume.
const Standard Real dx = atof(argv[2]);
const Standard Real dy = atof(argv[3]);
const Standard Real dz = atof(argv[4]);
TopoDS Solid S = ...;

Standard Real volume = ...;

// Command output.

DBRep::Set (argv[1l], S);

cout << argv[l] << "Volume is " << volume << endl;
return TCL OK;

Standard types

OCCT defines a set of aliases to the elementary data types which are used throughout the library instead

of pure C++ data type names:
OCCT type

Standard_Integer int
Standard_Real double
Standard_ShortReal float
Standard_Boolean bool
Standard_CString const char*
Standard_ExtString const short*
Standard_Address void*

Standard_Boolean can take one of the two values:

Standard Boolean C++ value
value

Standard_False false

Standard_True true

The handle mechanism

Handles are smart points used throughout the OCCT. In general, the handle mechanism is based on two
elements:

* A counter that stores the number of references to an object in memory.

* A pointer to an object in memory.

Every time a new handle to an object is created, the object's reference counter is incremented.

H2 }]
Ref. Counter=1 Ref. Counter=2

Referenced ‘ Referenced
Instance Instance

H1 =new ...; H2=H1;

The handle mechanism

Every time a handle to an object is removed, the object's reference counter is decremented. As soon as
the reference counter reaches 0, the object is automatically deleted.

Ref. Counter=1 — Ref. Counter=10 —

Referenced — Reéferericed
Instance _Anstance—|__

H1. Muilify(), H 2. Mullif();

This way, the reference counter secures the delete function. Handles can refer to nothing like usual
pointers.

Handles and smart pointers

There are built-in smart pointers starting from the C++11 standard. What is the difference between OCCT
handles and smart pointers?

Ownership type Smart pointer type “

Multiple ownership to

sSicee SITEEe] B underlying pointer
temporary weak_ptr Cyclic dependencies avoidance
sl STl o Single ownership to

underlying pointer

It is easy to see that OCCT's handles are the full equivalent of the shared pointer from C++11. OCCT does
not contain equivalents of other smart pointer types.

Handles implementation

This section presents how to implement a new class wrapped by OCCT's handles mechanism. The new
class should be inherited from the Standard_Transient class or its descendant:

class BRepAdaptor HCurve : public Adaptor3d HCurve

The special macro should be declared in the class definition for the possibility of creation of a handle to
class:

DEFINE STANDARD RTTI INLINE (BRepAdaptor HCurve,Adaptor3d HCurve)

The complete sample can be found in OCCT source code:
\srci\BRepAdaptor\BRepAdaptor_HCurve.hxx

OS abstraction layer

OCCT provides platform-independent interfaces to low-level operating system facilities in the OSD
package. This package is similar to the “os” module from the “python” programming language. The
following functionality is presented:

« Method 0SD: :SetSignal() sets up a C signal handler that converts software signals (such as
floating-point errors, access violation, etc.) to usual C++ exceptions.

* Classes OSD_File, 0OSD_Path, OSD_Directory give a uniform interface to file system.

* Classes OSD_Mutex and OSD_Thread provide a uniform interface to system-dependent
implementation of mutexes and threads.

* Class OSD_Timer implements a convenient timer object.

* Classes OSD_Host, 0SD_Process provide access to the information on the current computer and
process.

Collections

Historically, there are two collection sets within OCCT.

Collections

TCollection BNCollection

TCollection package was used to emulate templates before its standardization in 1998. Starting from OCCT
7.0, it is replaced by the corresponding NCollection instances.

NCollection package is a newer template-based package providing modern collections. It should be used
instead of TCol lection classes where possible.

Indexation starts from 1 in OCCT except from NCol lection_Vector, where indexation starts from O. It is
done to be compatible with STL-based algorithms.

Collection classes are manipulated by value; the versions manipulated by Handle are also provided for most of
them. For instance, see TCollection_HArrayT.

Collections & STL

There are a lot of collections in OCCT; it is fruitful to compare them with STL collections since they are a universal
reference point for a C++ language. As usual, there are several advantages and disadvantages in comparison to STL.

Advantages:

* Interface. OCCT collections are designed and implemented to be human-readable. The following piece of code
demonstrates STL equivalent of the OCCT's Seek () method for maps:

//! Inserts value to the map if it does not have and

// ! returns reference to stored value.

//!' \param [in] m Map to perform search in.

// ! \param [in] k Key.

// ' \param [in] v New value to insert.

template <class M,class Key>

typename M: :mapped typeé&

GetElseUpdate (M& m,
const Keyé& k,
const typename M::mapped type& V)

{

return m.insert (typename M::value type(k, v)).first->second;
}
« Memory efficiency. OCCT collections are designed to be memory efficient. For instance, when a new element is

added to NCollection_Vector and arepack is expected; a new chunk of fixed size will be allocated instead of
complete memory reallocation. A new element will be added to a new chunk instead of memcpy and element
assignment.

Collections & STL

Disadvantages:

« Random index access is slower than in STL collections. The measurable differences can be observed in
some extreme cases. It is possible to face that problem during low-level memory optimizations when
indirect addressing makes sense.

Collections comparison:

OCCT class ?TL €+ +.1 15TL
equivalent equivalent

Lower and upper indexes are defined

NCollection_Array - std::array ot the construction time
NCollection_Vector std::vector - Indexation starts from O
NCollection_List std::list std::forward_list OCCT list is one-directional list
NCollection_IndexedMap std::set std::unordered_set OCCT uses hash map instead of tree

NCollection_IndexedDataMap std::map std::unordered_map OCCT uses hash map instead of tree

Exceptions

By convention, all exception classes used in Open CASCADE libraries are inherited from the class
Standard_Failure. A hierarchy of exception classes derived from it is defined in the package Standard.

For robust work of OCCT algorithms in case of numerical instabilities, it is necessary to call the method
0SD: :SetSignal() somewhere in the application (once; on Windows - once in each execution thread).

After that, both standard C++ exceptions and software signals can be treated in a uniform way in a usual C++

manner: // Some user function.
void SomeFunction (arguments)

{

try
{

// Set up a special signal handler code (necessary for Linux/UNIX only).
OCC_CATCH SIGNALS

// Do the actions.

}

catch (Standard Failure& anErr)

{

// Treat error here.

Messages

Package Message provides facilities for OCCT and application-level algorithms to communicate with the
user in the abstract and customizable way:

« Class Message_Messenger is an interface for the output of string messages. It can be customized by
directing the output to one or more streams, GUI window, or whatever else, in accordance with the
application needs.

* Class Message_Msg provides means for messages localization. It is initialized by message key and
parameters and constructs a corresponding message as a text string. The definitions of the message
strings associated with keys are loaded from the resource file.

* Class Message_Algorithm provides a convenient way for classes to implement complex algorithms
to return an extended status of execution, including user-oriented messages on encountered problems
and situations.

Progress indicator

The progress indicator is an entity that allows tracking progress of downstream algorithms and reports it. Class
Message_ProgressIndicator provides an interface for complex algorithms to inform about their current
status of execution during runtime, with a possibility to break upon the user command. Currently (OCCT 7.4.0),
there is no support for concurrent progress indicator that could be useful in multi-threaded applications. Typical
wrapper for progress indicator is presented below:

class core ProgressIndicator : public Message ProgressIndicator

{
public:

//! Constructor.
core EXPORT core ProgressIndicator();

//! Update progress state

//' \param[in] theForce the flag for forcing update

//' \return false if update interval has not elapsed and true otherwise.

virtual Standard Boolean Show(const Standard Boolean theForce =
Standard True);

//! Check for cancelled state.

//! \return True if the user has send to a break signal
virtual Standard Boolean UserBreak();

}i

About Open Cascade

It is a software development company which is laser-focused on digital transformation of industries through
the use of 3D technologies.

Open Cascade offers a wide range of high-performance proprietary 3D software tools both open-source and
commercial. The first ones have been developed, maintained and continuously improved since 2000. Whereas
the second ones have been progressively aggregated in the Commercial Platform based on which the company
offers creating modern tailor-made industrial solutions that meet even the most sophisticated client'’s
requirements.

Moreover, Open Cascade expands its portfolio by offering end-user industrial software products and delivering
software customization and integration services. Open Cascade provides its solutions and services worldwide.
The company is a part of the Capgemini’s Digital Engineering and Manufacturing Services global business line.

Learn more about Open Cascade at ~ Www.opencascade.com

OPEN
o CASCADE

Backing your path to digital future

