
O
p

e
n

C

A
S

C
A

D
E

T

e
c

h
n

o
l

o
g

y

 O p e n C A S C A D E T e c h n o l o g y

 www.opencascade.com Copyright © 2019 by OPEN CASCADE Page 1 / 13

Open CASCADE Technology

Version 7.4.0

Release Notes

October 1, 2019

Overview

Open CASCADE Technology 7.4.0 provides more than 500

improvements and corrections over the previous release 7.3.0.

https://www.opencascade.com/

O
p

e
n

C

A
S

C
A

D
E

T

e
c

h
n

o
l

o
g

y

 O p e n C A S C A D E T e c h n o l o g y

 www.opencascade.com Copyright © 2019 by OPEN CASCADE Page 2 / 13

Highlights

Modeling

 Improved robustness, performance and accuracy of BRepMesh algorithm

 Options to control linear and angular deflection for interior part of the faces in
BRepMesh

 Improved robustness and stability of Boolean operations and Extrema

 Enabled Boolean Operations on open solids

 Option to suppress history generation to speed up Boolean Operations

 Option to simplify the result of Boolean Operation

 Possibility to calculate surface and volume properties of shapes with
triangulation-only geometry

 A new interface for fetching finite part of infinite box in BRepBndLib

 New “constant throat” modes of chamfer creation

 Removal of API for old Boolean Operations

Visualization

 Improved support of embedded Linux platforms

 Selection performance improvement

 Support of clipping planes combinations (clip by box, ¾, etc.)

 New class AIS_ViewController converting user input (mouse, touchscreen) to
camera manipulations

 Improved font management

 Improved tools for visualization performance analysis

 Option to display the outline of shaded objects

 Option to exclude seam edges from Wireframe display

 Option to display shrunk mesh presentation

 Possibility to show shapes with dynamic textures (video)

 Support of reading encoded bitmap image from memory buffer

 Removal of the deprecated Local Context functionality from AIS

 Removed dependency from gl2ps (relying on deprecated OpenGL functionality)

Data Exchange

 New tools to import mesh data from glTF 2.0 and OBJ formats

 Support of some non-ASCII encodings in STEP import

 Support of XDE data (assembly structure, colors, names) in export to VRML

Draw Test Harness

 Improved 3D Viewer camera manipulations

 Fixed issues with starting Draw Harness from batch scripts

 Improved support of running Draw Harness in environment without CASROOT

https://www.opencascade.com/

O
p

e
n

C

A
S

C
A

D
E

T

e
c

h
n

o
l

o
g

y

 O p e n C A S C A D E T e c h n o l o g y

 www.opencascade.com Copyright © 2019 by OPEN CASCADE Page 3 / 13

Other

 Improved performance of built-in parallelization routines (OSD_Parallel)

 Tools for convenient and efficient traverse of BVH structures

 Optimization of TPrsStd_AISPresentation attribute

 Sample of 3D Viewer integration in glfw application

https://www.opencascade.com/

O
p

e
n

C

A
S

C
A

D
E

T

e
c

h
n

o
l

o
g

y

 O p e n C A S C A D E T e c h n o l o g y

 www.opencascade.com Copyright © 2019 by OPEN CASCADE Page 4 / 13

New Features

Refactoring of BRepMesh

BRepMesh component has been refactored. The new architecture simplifies the

process of mesh generation over OCCT’s BRep models and enables processing of

some corner cases that were hard to handle before.

Improvements

Major improvements of the BRepMesh component have been implemented in the

context of the issue #0026106 “BRepMesh - revision of data model” and its

descendants:

Internal code structure

 New internal data structures as a backbone;

 Clear separation of data structures, auxiliary tools, and algorithms;

Performance

 Edges tessellation in parallel mode;

 Execution of checks, healing of discrete model, and model pre- and post-
processing in partially parallel mode;

 Localization of re-tessellation in case of intersections of discrete representations
of edges in the face by the relevant edges only and not the entire face;

Robustness and quality

 Pre-processing of a data model to resolve common cases of self-intersections of
discrete representation;

 Improved presentation of cones near seam edges;

 Improved presentation of spheres near poles;

 Two new parameters to control linear and angular deflection of the interior part of
faces separately from their boundaries;

 Additional improvements for NURBS surfaces to fit specified linear and angular
deflection;

 Some improvements to resolve unrestricted consumption of memory and hang-
ups on specific cases of NURBS surfaces.

https://www.opencascade.com/
https://tracker.dev.opencascade.org/view.php?id=26106

O
p

e
n

C

A
S

C
A

D
E

T

e
c

h
n

o
l

o
g

y

 O p e n C A S C A D E T e c h n o l o g y

 www.opencascade.com Copyright © 2019 by OPEN CASCADE Page 5 / 13

Examples

Visual improvements

OCCT 7.3.0 OCCT 7.4.0

https://www.opencascade.com/

O
p

e
n

C

A
S

C
A

D
E

T

e
c

h
n

o
l

o
g

y

 O p e n C A S C A D E T e c h n o l o g y

 www.opencascade.com Copyright © 2019 by OPEN CASCADE Page 6 / 13

https://www.opencascade.com/

O
p

e
n

C

A
S

C
A

D
E

T

e
c

h
n

o
l

o
g

y

 O p e n C A S C A D E T e c h n o l o g y

 www.opencascade.com Copyright © 2019 by OPEN CASCADE Page 7 / 13

Accuracy improvements

OCCT 7.3.0 OCCT 7.4.0

Performance improvements

The shape above contains an assembly where a single solid box is replicated

~93000 times. The performance on this case has been improved by more than 10

times comparing to 7.3.0:

https://www.opencascade.com/

O
p

e
n

C

A
S

C
A

D
E

T

e
c

h
n

o
l

o
g

y

 O p e n C A S C A D E T e c h n o l o g y

 www.opencascade.com Copyright © 2019 by OPEN CASCADE Page 8 / 13

Implications on porting

In the new version deflection is controlled more accurately. Due to this improvement

it may be necessary to tune parameters of call of the BRepMesh algorithm on the

application side to obtain the same visual quality of presentation and/or performance

as before.

For the details related to the structure and the usage of updated component see

Meshing part of OCCT documentation.

Thread pool for multithreaded tasks

Built-in multi-threading support (when OCCT is used without TBB) has been

improved with thread pool support. Algorithms relying on OSD_Parallel for

multithreaded execution will benefit from lower overhead due to reusable thread

resources and from better balancing within nested multithreaded algorithms chain

(previously each nesting level created independent thread loop, which resulted in

threads number multiplication).

The size of global OSD_ThreadPool instance can be adjusted for better control of

CPU resources usage by OCCT algorithms on application level. Algorithms using

OSD_ThreadPool::Launcher directly (in contrast to OSD_Parallel) can define

working tasks receiving index of a thread within the pool; this can be used to

preallocate thread-local storage (like file handles) to optimize work with data.

If OCCT is built with TBB support, it is possible to dynamically switch

OSD_Parallel::For() between using either TBB or built-in parallelization

implementation via OSD_Parallel::SetUseOcctThreads() global flag. Within the

Draw Test Harness the parallelization parameters can be adjusted via new

command dparallel like this:

> pload MODELING
> dparallel -occt 1 -nbThreads 10 -nbDefThreads 10

> incmesh shape 0.1 -parallel

Tools for convenient traverse of BVH structures

New BVH_Traverse and BVH_PairTraverse classes have been introduced for

convenient traverse of BVH tree and a pair of BVH trees, respectively. These

classes implement the BVH tree descend taking into account different scenarios and

optimizations such as:

 Descent by the best branch. Each node has a metric, and the node with the best
metric is always processed first, which allows finding the necessary result faster.

 Full inclusion test. If at some point the node of the tree is fully accepted (i.e. its
box fully matches particular criteria), its children are not going to be checked and
will be accepted automatically.

https://www.opencascade.com/
https://dev.opencascade.org/doc/overview/html/occt_user_guides__modeling_algos.html#occt_modalg_11
https://dev.opencascade.org/doc/overview/html/occt_user_guides__modeling_algos.html#occt_modalg_11

O
p

e
n

C

A
S

C
A

D
E

T

e
c

h
n

o
l

o
g

y

 O p e n C A S C A D E T e c h n o l o g y

 www.opencascade.com Copyright © 2019 by OPEN CASCADE Page 9 / 13

To use these classes user needs to implement the methods defining the rules for the

node rejection and leaf acceptance:

 RejectNode - operates with the bounding box of the node and should provide
comparison of the box with some criteria and define if the node should be
rejected.

 Accept - performs processing of the elements of the tree.

The methods for optimizations of the tree traverse are optional:

 RejectMetric - compares the metric of the node with the global one and
determines whether the node should be rejected.

 IsMetricBetter - compares the two metrics and defines the direction of the tree
traverse.

 Stop - stops the traverse when the result is achieved.

New classes BVH_Distance and BVH_PairDistance implement tools to find the

min/max distance between some object and BVH tree or between two BVH trees. All

optimizations are already implemented, user just needs to define:

 In case of BVH_Distance: how the distances from the object to the box and to
the element of BVH tree are computed.

 In case of BVH_PairDistance: how the distance between the elements of the
trees is computed.

The new BVH_BoxSet class implements simple and convenient interface to add

elements into the tree.

Tools for reading glTF and OBJ files

New classes RWGltf_CafReader and RWObj_CafReader with TKRWMesh toolkit

have been introduced to read glTF and OBJ files. Readers consist of two parts: low-

level reader relying on internal structures and a translator into an XDE document.

Low-level reader can be used for translating data into non-XDE structures, including

file format features, currently unsupported by XDE document.

glTF reader supports 1.0 and 2.0 versions of format specifications and handles

common (glTF + bin), embedded (base64-encoded mesh data) and binary glTF (glb)

files. Reader preserves scene structure, triangulation, names and colors. The reader

relies on RapidJSON library, which should be enabled (HAVE_RAPIDJSON) while

building OCCT from source code.

OBJ reader supports reading polygonal information, names (groups) and colors

(from MTL file). Polygons are automatically split into triangles using BRepMesh tools.

glTF (and most OBJ) files use Y-up coordinate system which can be unexpected by

CAD systems working with Z-up coordinate system. To handle this, glTF and OBJ

readers allow defining file and system coordinate systems as input parameters (see

RWMesh_CoordinateSystemConverter tool).

New readers can be accessed from Draw Harness via commands ReadGltf and

ReadObj like this:

https://www.opencascade.com/

O
p

e
n

C

A
S

C
A

D
E

T

e
c

h
n

o
l

o
g

y

 O p e n C A S C A D E T e c h n o l o g y

 www.opencascade.com Copyright © 2019 by OPEN CASCADE Page 10 / 13

> pload XDE VISUALIZATION
> ReadGltf D Buggy.gltf
> vinit
> XDisplay -dispMode 1 D -explore
> vfit

Interactive view cube

A new class AIS_ViewCube has been introduced to provide an interactive

alternative to AIS_Trihedron - a resident auxiliary object displayed in a view corner

indicating axes of global coordinate system.

AIS_ViewCube represents an interactive cube with pickable cube sides, edges and

vertices, which allow user to open one of standard views. Transition is done with

smooth animation. The look-n-feel of a new object can be adjusted to fit color

scheme used by the application.

New object can be activated in Draw Harness via the vviewcube command like this:

> pload VISUALIZATION

> vinit

> vviewcube vc

View Controller

A new class AIS_ViewController implements mapping of user input events from

various devices (mouse, touchpad, keyboard) onto camera manipulations in OCCT

3D Viewer. This class supports standard mouse and touchscreen input layouts,

cooperates with OCCT 3D Viewer update pipeline (including picking and selection)

and supports two-thread approach (with separate threads for GUI and rendering), so

it can be used for more rapid and robust integration of OCCT 3D Viewer into the

application.

https://www.opencascade.com/

O
p

e
n

C

A
S

C
A

D
E

T

e
c

h
n

o
l

o
g

y

 O p e n C A S C A D E T e c h n o l o g y

 www.opencascade.com Copyright © 2019 by OPEN CASCADE Page 11 / 13

Draw Harness already benefits from migration onto AIS_ViewController by

providing uniform user experience across platforms. The integration with particular

GUI framework is, however, beyond the scope of this class - currently it was

successfully used for redirecting user input from native APIs (WinAPI, Xlib, Cocoa)

and in QtQuick application.

View Controller also utilizes information from picking services to provide a better

user experience within perspective camera projection.

Complex clipping in 3D viewer

3D Viewer now supports Clipping Chains which define logical AND (conjunction)

operation in addition to Clipping Planes defining logical OR (disjunction) supported

previously. This enables providing interactive ¾ section (when ¼ of detail is cut off)

and box section presentations. New feature is available through new

Graphic3d_ClipPlane class properties - see documentation for methods

Graphic3d_ClipPlane::SetChainNextPlane().

In Draw Harness, clipping chains can be activated via command vclipplane like this:

> pload MODELING VISUALIZATION
> box b 20 40 20 100 20 30
> vinit
> vdisplay b -dispMode 1
> vclipplane pln -set -boxint 25 25 25 55 55 55

Tools for analysis of 3D viewer performance

Tools for profiling 3D Viewer performance integrated into OCCT have been

extended. The tools now provide more counters to analyse and can display a chart

with frame timings.

https://www.opencascade.com/

O
p

e
n

C

A
S

C
A

D
E

T

e
c

h
n

o
l

o
g

y

 O p e n C A S C A D E T e c h n o l o g y

 www.opencascade.com Copyright © 2019 by OPEN CASCADE Page 12 / 13

These tools can be helpful for optimization of performance of visualization pipeline in

OCCT-based application. As they are integrated into 3D Viewer, they can be easily

activated with minimal efforts - see Graphic3d_RenderingParams::CollectedStats

and Graphic3d_RenderingParams::ToShowStats.

The onscreen performance counters can be activated in Draw Harness via command

vrenderparams like this:

> pload VISUALIZATION
> vinit -w 1024 -h 512

> vviewcube vc
> vdisplay vc -trihedron bottomright 100 100
> vrenderparams -perfCounters full -perfChart 100

Dynamic display of shape outline

3D Viewer now supports new flag Graphic3d_Aspects::SetDrawSilhouette(),

which allows including shape outline within Shaded presentation. Combination of this

flag with Aspect_IS_HIDDENLINE interior style and suppressed seam edges face

boundaries (see Prs3d_Drawer::SetFaceBoundaryUpperContinuity()) make it

possible to achieve HLR-alike effect without expensive modelling algorithms.

New options are available within Draw Harness command vaspects, and can be

used like this:

> pload MODELING VISUALIZATION
> box b 2 0 0 1 2 3
> psphere s 1
> vinit
> vsetcolorbg 255 255 255

https://www.opencascade.com/

O
p

e
n

C

A
S

C
A

D
E

T

e
c

h
n

o
l

o
g

y

 O p e n C A S C A D E T e c h n o l o g y

 www.opencascade.com Copyright © 2019 by OPEN CASCADE Page 13 / 13

> vdisplay -dispMode 1 b s
> vfit
> vaspects b s -setDrawSilhouette 1 -setEdgeColor BLACK

 -setFaceBoundaryDraw 1 -setMostContinuity c0

 -setFaceBoundaryColor BLACK -setInteriorStyle HIDDENLINE

https://www.opencascade.com/

	Highlights
	Modeling
	Visualization
	Data Exchange
	Draw Test Harness
	Other

	New Features
	Refactoring of BRepMesh
	Improvements
	Internal code structure
	Performance
	Robustness and quality
	Examples
	Visual improvements
	Accuracy improvements
	Performance improvements

	Implications on porting

	Thread pool for multithreaded tasks
	Tools for convenient traverse of BVH structures
	Tools for reading glTF and OBJ files
	Interactive view cube
	View Controller
	Complex clipping in 3D viewer
	Tools for analysis of 3D viewer performance
	Dynamic display of shape outline

