Open CASCADE Technology
6.9.1

This algorithm converts a bounded Sphere into a rational Bspline surface. The sphere is a Sphere from package gp. The parametrization of the sphere is P (U, V) = Loc + Radius * Sin(V) * Zdir + Radius * Cos(V) * (Cos(U)*Xdir + Sin(U)*Ydir) where Loc is the center of the sphere Xdir, Ydir and Zdir are the normalized directions of the local cartesian coordinate system of the sphere. The parametrization range is U [0, 2PI] and V [PI/2, PI/2]. KeyWords : Convert, Sphere, BSplineSurface. More...
#include <Convert_SphereToBSplineSurface.hxx>
Public Member Functions  
Convert_SphereToBSplineSurface (const gp_Sphere &Sph, const Standard_Real U1, const Standard_Real U2, const Standard_Real V1, const Standard_Real V2)  
The equivalent Bspline surface as the same orientation as the sphere in the U and V parametric directions. More...  
Convert_SphereToBSplineSurface (const gp_Sphere &Sph, const Standard_Real Param1, const Standard_Real Param2, const Standard_Boolean UTrim=Standard_True)  
The equivalent Bspline surface as the same orientation as the sphere in the U and V parametric directions. More...  
Convert_SphereToBSplineSurface (const gp_Sphere &Sph)  
The equivalent Bspline surface as the same orientation as the sphere in the U and V parametric directions. More...  
Public Member Functions inherited from Convert_ElementarySurfaceToBSplineSurface  
Standard_Integer  UDegree () const 
Standard_Integer  VDegree () const 
Returns the degree for the u or v parametric direction of the BSpline surface whose data is computed in this framework. More...  
Standard_Integer  NbUPoles () const 
Standard_Integer  NbVPoles () const 
Returns the number of poles for the u or v parametric direction of the BSpline surface whose data is computed in this framework. More...  
Standard_Integer  NbUKnots () const 
Standard_Integer  NbVKnots () const 
Returns the number of knots for the u or v parametric direction of the BSpline surface whose data is computed in this framework . More...  
Standard_Boolean  IsUPeriodic () const 
Standard_Boolean  IsVPeriodic () const 
Returns true if the BSpline surface whose data is computed in this framework is periodic in the u or v parametric direction. More...  
gp_Pnt  Pole (const Standard_Integer UIndex, const Standard_Integer VIndex) const 
Returns the pole of index (UIndex,VIndex) to the poles table of the BSpline surface whose data is computed in this framework. Exceptions Standard_OutOfRange if, for the BSpline surface whose data is computed in this framework: More...  
Standard_Real  Weight (const Standard_Integer UIndex, const Standard_Integer VIndex) const 
Returns the weight of the pole of index (UIndex,VIndex) to the poles table of the BSpline surface whose data is computed in this framework. Exceptions Standard_OutOfRange if, for the BSpline surface whose data is computed in this framework: More...  
Standard_Real  UKnot (const Standard_Integer UIndex) const 
Returns the Uknot of range UIndex. Raised if UIndex < 1 or UIndex > NbUKnots. More...  
Standard_Real  VKnot (const Standard_Integer UIndex) const 
Returns the Vknot of range VIndex. Raised if VIndex < 1 or VIndex > NbVKnots. More...  
Standard_Integer  UMultiplicity (const Standard_Integer UIndex) const 
Returns the multiplicity of the Uknot of range UIndex. Raised if UIndex < 1 or UIndex > NbUKnots. More...  
Standard_Integer  VMultiplicity (const Standard_Integer VIndex) const 
Returns the multiplicity of the Vknot of range VIndex. Raised if VIndex < 1 or VIndex > NbVKnots. More...  
Additional Inherited Members  
Protected Member Functions inherited from Convert_ElementarySurfaceToBSplineSurface  
Convert_ElementarySurfaceToBSplineSurface (const Standard_Integer NumberOfUPoles, const Standard_Integer NumberOfVPoles, const Standard_Integer NumberOfUKnots, const Standard_Integer NumberOfVKnots, const Standard_Integer UDegree, const Standard_Integer VDegree)  
Protected Attributes inherited from Convert_ElementarySurfaceToBSplineSurface  
TColgp_Array2OfPnt  poles 
TColStd_Array2OfReal  weights 
TColStd_Array1OfReal  uknots 
TColStd_Array1OfInteger  umults 
TColStd_Array1OfReal  vknots 
TColStd_Array1OfInteger  vmults 
Standard_Integer  udegree 
Standard_Integer  vdegree 
Standard_Integer  nbUPoles 
Standard_Integer  nbVPoles 
Standard_Integer  nbUKnots 
Standard_Integer  nbVKnots 
Standard_Boolean  isuperiodic 
Standard_Boolean  isvperiodic 
This algorithm converts a bounded Sphere into a rational Bspline surface. The sphere is a Sphere from package gp. The parametrization of the sphere is P (U, V) = Loc + Radius * Sin(V) * Zdir + Radius * Cos(V) * (Cos(U)*Xdir + Sin(U)*Ydir) where Loc is the center of the sphere Xdir, Ydir and Zdir are the normalized directions of the local cartesian coordinate system of the sphere. The parametrization range is U [0, 2PI] and V [PI/2, PI/2]. KeyWords : Convert, Sphere, BSplineSurface.
Convert_SphereToBSplineSurface::Convert_SphereToBSplineSurface  (  const gp_Sphere &  Sph, 
const Standard_Real  U1,  
const Standard_Real  U2,  
const Standard_Real  V1,  
const Standard_Real  V2  
) 
The equivalent Bspline surface as the same orientation as the sphere in the U and V parametric directions.
Raised if U1 = U2 or U1 = U2 + 2.0 * Pi Raised if V1 = V2.
Convert_SphereToBSplineSurface::Convert_SphereToBSplineSurface  (  const gp_Sphere &  Sph, 
const Standard_Real  Param1,  
const Standard_Real  Param2,  
const Standard_Boolean  UTrim = Standard_True 

) 
The equivalent Bspline surface as the same orientation as the sphere in the U and V parametric directions.
Raised if UTrim = True and Param1 = Param2 or Param1 = Param2 + 2.0 * Pi Raised if UTrim = False and Param1 = Param2
Convert_SphereToBSplineSurface::Convert_SphereToBSplineSurface  (  const gp_Sphere &  Sph  ) 
The equivalent Bspline surface as the same orientation as the sphere in the U and V parametric directions.